Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers?

نویسندگان

  • Ivo Babuska
  • Stefan A. Sauter
چکیده

The development of numerical methods for solving the Helmholtz equation, which behaves robustly with respect to the wave number, is a topic of vivid research. It was observed that the solution of the Galerkin finite element method (FEM) differs significantly from the best approximation with increasing wave number. Many attempts have been presented in the literature to eliminate this lack of robustness by various modifications of the classical Galerkin FEM. However, we will prove that, in two and more space dimensions, it is impossible to eliminate this so-called pollution effect. Furthermore, we will present a generalized FEM in one dimension which behaves robustly with respect to the wave number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

Is Pollution Effect of Finite Difference Schemes Avoidable for Multi-Dimensional Helmholtz Equations with High Wave Numbers?

This paper presents an approach using the method of separation of variables applied to 2D Helmholtz equations in the Cartesian coordinate. The solution is then computed by a series solutions resulted from solving a sequence of 1D problems, in which the 1D solutions are computed using pollution free difference schemes. Moreover, non-polluted numerical integration formulae are constructed to hand...

متن کامل

A Performance Study of High-order Finite Elements and Wave-based Discontinuous Galerkin Methods for a Convected Helmholtz Problem

The finite element method (FEM) remains one of the most established computational method used in industry to predict acoustic wave propagation. However, the use of standard FEM is in practice limited to low frequencies because it suffers from large dispersion errors when solving short wave problems (also called pollution effect). Various methods have been developed to circumvent this issue and ...

متن کامل

Pollution-free Finite Difference Schemes for Non-homogeneous Helmholtz Equation

In this paper, we develop pollution-free finite difference schemes for solving the non-homogeneous Helmholtz equation in one dimension. A family of high-order algorithms is derived by applying the Taylor expansion and imposing the conditions that the resulting finite difference schemes satisfied the original equation and the boundary conditions to certain degrees. The most attractive features o...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2000